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NOTATION

a' Amplitude of solitary wave

A,B,C,D Constants in the solitary wave equation

b' Elevation of vortex singularity (b =bb'1)

f(z) Complex potential

F' Drag force (F = F'/pgLA)

hi Solitary wave depth at infinity (h = h'')

k Integration variable

*'Depth at crest(sol.itary wave) and upstream (singularity).

N Outer free-surface elevation (N =n/ )

ul,vt Inner velocity components

(u = u'/(gt,') , v = v'/(g,)

uA Velocity at solitary wave crest

(uA
uA = uAl(gt,1

U,V Outer velocity components (dimensionless)

w Complex velocity

x1,y' Horizontal and vertical inner coordinates

(x = x'l,', y = y'l')
X,Y Outer coordinates

z Complex variable

a Dimensionless wave number

AConstant in the solitary wave equation

' Vortex strength (5 - '/g L' )

C Small parameter

- ' Inner free-surface elevation N - A)
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ABSTRACT

The two-dimensional free-surface flow generated by a singu-

larity moving with near-critical speed (i.e. with Froude number

referred to the water depth near unity)is solved by using the

method of matched asymptotic expansions. In the vicinity of the

singularity the problem is solved by an infinitesimal wave ex-

pansion (inner eYoansion) while at large distances from the singu-

larity shallow water theory provides the proper solution (outer

expansion). A composite expansion provides a uniformly-valid so-

lution for the velocity components, the free-surface profile and

the dra- force. These two basic approaches of water-wave theory

are shown to be solutions of the same flow problem, but valid in

diffe. regions, Although the inner expansion satisfies linear

equatiozs, the solution depends nonlinearly on the small parameter

of' the problem (the singularity strength).

INTRODUCTI ON

A singularity moving at constant speed in finite-depth water

Is considered herein. The flow is two-dimensional and it is

3teady when referred to a moving coordinate system. In this sys-

tem the standing singularity is considered to be a perturbation

of a stream of uniform velor:ity.

The nonMnear free-surface problem has been solved by a

first order infinitesimal. wave expansion for different types of

singularities (Wehausen and Laitone, 1960, review the solutions).
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All solutions diverge, however, when the unperturbed velocity

approaches its critical value, i.e. when the Froude number based

on stream depth tends to unity. It is generally assum-d that

the linear theory fails in this case (Stoker, 1957, p. 217).

The other basic approach, nonlinear shallow water theory, is

able to predict the existence of waves of finite amplitude at

near-critical speeds; but this theory cannot represent flows in

the vicinity rf q1nalilarities, benause it i bised on the assump-

tion that the horizontal velocity component is almost uniform and

much larger than the vertical one.

The purpose of this paper is to solve the problem of criti-

cal flow by using the method of matched asymptotic expansions

(Van Dyke, 1964). The infinitesimal wave expansion will be shown

to provide a meaningful solution in the vicinity of the singularity

and will be called, consequently the inner expansion. This expan-

sion diverges at a large distance from the singularity. There, an

outer expansion, derived according to matching requirements, de-

scribed the flow conditions. This outer expansion is precisely

the well-known shallow water theory. A composite expansion,

therefore, solves the paradoxal problem of critical flows. The

results, however, go beyond this purpose; they show that the two

basic theories of water waves are organically interrelated by

the method of matched asymptotic expansions.

The present paper is an extension of previous work it, which

the method of matched asymptotic expansions was applied to Cree-

surface flows in porous media (Pagan, 1967).



HYDRONAUTICS, Incorporated

THE HOMOGENEOUS PROBLEM: THE SOLITARY WAVE

The derivation of the solitary wave by the method of matched

asymptotic expansions will be discussed in the first stage.

With the variables of Figure 1 made dimensionless by re-

ferring the velocity components u, v to (g l) and the lengths

to 2', the exact equations of flow are

u +v = ]
x y

(0 < y < n)

uy -v = [21

U2(u a + v ) +I] =1 +- -[3]

(y 71n
v - uix = 0 (4]

v = o (y = o) 151

n = 1 (x I 0) (6]

a h (lxi = -) (71

1.A being the velocity at the crest.

The solution for the flow in the vicinity of crest A is

sought by a first-order Inflnitesimal wave expansion whose zero

order term Is a uniform flow of velocity u and depth 1 " 1,

14e.
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U = U + eU,
0

V = eVl

[8]
= 1 + En,1

uA U 0+ EU AUA o U•+UA 1

c being the small parameter.

By substituting the expansion [8] into Equations [11-[6],

3nd discarding the condition at infinity (7], one obtains the

usual linearized equations

uJLX + v, = 0 ( 9]

(0< y<l)

u + 1  0x [10]

U U1 + n1 = Uo UA

(y -- i
v].- Uox- 0 [12)

V -o (y - o) [13]

9 ) o (x - o) [14]

Considering, for the sake of simplicity, only the region

x k 0, the elementary solution of Equations (9]-( ] may be

written as
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u c (cosh a - cos ax cosh ay) + c sin ax cosh ay + UA [15]s c A

v, = -c sin ax sinh ay - cC sinh ay cos ax [16]

= -Cu cosh a (1-cos ax) - c cu cosh a sin ax [17]

where a is the root of the equation

tanh a 2 [181
a o

and u _ 1.

0

The solution is continued in the region x < 0 by replacing

x by -x in Equations [151-[]7. The two arbitrary constants cs

and c multiply, therefore, a smooth solution at the origin andC

a cusped one, respectively (equation 17).

The above well-known solution is periodic and cannot satisfy

the requirements of nonper'odicity and uniformity at lxi = oo ex-

pressed by Figure 1 and Equation [7]. In the vicinity of the

origin, however, and for small a (i.e. u close to the criticalo

speed u = 1) the solution [15]-[18] may be expanded in a power

series as follows

u = u 0 c ca 2 2 y2 +1) + UA] [19]
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V =E (-c ay Cs a2 xy) [20]

=1+ c u x [21]
c 0 s 2

tanh a a 2
a- 3 ... = U0 [22]a 3 o

with the highest order retained being O(Ea 2 ).

The solution expressed by Equations [19]-[22] becomes un-

bounded as x , the expansion being therefore singular there.

Considering this as an inner expansion, an outer expansion is

sought according to the usual procedure (Van Dyke, 1964) by

adopting the following outer variables

1 1

X = E2x Y = y N= U = u V = Ev

[231

The outer variables of [23] have been selected so that for

large x the quadratic term in Equation [21] becomes of the order

of magnitude 0(1) with respect to E.

The inner variables may now be expanded tentatively in an e

power series

U = U0 + eU, + ... [241

V = EV1 + ... [25]

N =N + eN+... [26]
0
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The Equations [231-[261 represent precisely the shallow

water expansion of Friederichs and Keller (Friederichs, 1948).

The outer expansion of the exact Equations [11-[6] has been

carried out systematically by Laitone (Laitone, 1960) and will

not be repeated here. Thp first order equations are the well-

known shallow water equations, the solution being (Laitone, 1960)

U = N 2 = const. [27]
0 0

U, = f(X) N = -[Uof(X) + C] Vi : 0 [28]

The function f(X) satisfies the differential equation

f 9 f2  3C f = 0 [29]
2U5 U 6

0 0

where C is an arbitrary constant.

Since the solution has to be used only in the outer zone,

the nonlinear Equation [29] may be easily solved by iterations

in the vicinity of X = o (with f(w) = 0); but we may take ad-

vantage of the fact that the exact solution of [29] is well

known being in the nonperiodical case (Laitone, 1963)

f(X) =-Csech 2  4 CX + 130]

00
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where is an arbitrary constant.

The constants u, UA E, c, cc, C, U, N and which ap-

pear in the inner and outer solutions have to be found by matching

and by using the Equations [7] and [27]. The matching is carried

out by requiring that the inner limit of the outer representation

should be equal to the outer limit of the inner representation

(Van Dyke, 1964).

The inner limit of the outer representation is obtained by

replacing the outer variables in Equations [27S-[30] by the inner

variables of Equation [23] and expanding as E- 0 and X is fixed.

The result for the function f is

f C [i- 2BD ix- D2 (1-3B2 ) +... .31]
U AL
0

2

where, for, briefness, D ( ) A csh D and B tanh DA.

In Equation 131] only the terms necessary for matching at the

considered order have been retained.

The substitution of [31] in Equations [23]-[28], rewritten

in inner variables, yields

N N -CB 2  2CBD 3/2 CD(-3B 2 2
N o C AF- E X - 2 Ex(32)

o 2 2 2
UoA Uo A U A

0 0 0
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The comparison of Equations [32] and [33] with Equations [19]V and [21] shows that the matching at zero order requires

No = U = u0 = 1 [ 3 4]

which means that the unperturbed flow must be near critical. More-
2

over, a has to be of order 2 in order to make the matching pos-

sible at higher order. For the sake of simplicity we can take

a 2c = E and express the inner expansion [19] and [21] as
s

Tc E3/2x 2x+ [ 35]
c 2

u =1+ Eu + C E3'X + [36]
Al c 2

Since terms of order E2y2 and E2 of u appear in 2 U2 only

and terms of order CEy of v appear in E V2 (Laitone, 1960), they

have been discarded in Equations [35] and (36].

It can be easily checked that the pair of functions

U = CcX U - Cj y

(37]
V = -CocY) v = -csxy [7

which appear in the inner expansion (19] and [20] are exact solu-

tions of the linearized Equations [9]-[13] when u0 = 1. They are

the elementary first order solutions of the homogeneous linearized
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equations of a free-surface flow at critical speed, counterpart

of the sin and cos solutions [15] and [16] of a subcritical flow.

The Equation [37] may be used directly as first order solutions

of Equations [9]-[13] with u = 1. The derivation by the limitingO

process discussed here is useful, however, for the case of a singu-

larity as well as for higher order expansions.

The matching of the outer terms [32] and [33] with the inner

terms [35] and [36] is a matter of algebraic computation.

In the case of the solitary wave a solution which is smooth

at the origin is sought. Hence, cc = 0 and the corresponding
2c

outer term 2CBD/UoA2 = 0, i.e. B = 0, A = 1, and 0 = .

The inner and outer expansions, written in inner variables,

become in this case

2E 2=1 -- x-

2€22

u=u + eu + x2
0  Al 2

138]

NN - C2  xo 4 6
U

0

Ca2. C + I C 2

0U-

I
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The matching at first order with the supplementary conditions
i

U - N0 2 and N = H (for x oo) yields
0 0 0

N U u =1 EC 1-H C =(2/3)1 ElUA 1-h [39]
00 0 A

The complete solution of the solitary wave should be ex-

pressed by a composite expansion, but this is not necessary since

the outer expansion is regular in the inner zone and coincides

with the inner expansion, i.e. the overlapping zone coincides with

the inner zone. Hence, the whole solution is expressed by Equa-

tions (26], [28], (30) and (39] in inner variables as

=h + (1-h) sech2  3(-)TxJ [40](1x4 1oi

which is the well known solitary wave solution. The velocities

at the crest and at infinite are

uA 1 - =h

[41]
u-U -I

0

or, in dimensional variables

uA' -h

which -i, n a igh,(l+s'iu)

which is, again, a classical result.
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It seems, therefore, that the method of matched asymptotic

expansions does not provide any improvement in the accuracy of

the shallow water solution. This feature is, however, charac-

teristic for the solitary wave which has a uniform structure in

the vicinity of the crest, but will be different in the case of

a moving singularity.

The derivation of the onoidal waves is entirely similar to

that of the solitary wave and will not be considered here.

The possibility of matching the outer expansion with an inner

solution which has a non-zero derivative at the origin (cc 0)

is the key to the solution of flow past singularities.

FLOW PAST A SINGULARITY

A submerged vortex in a uniform, unperturbed stream will be

considered for the sake of definiteness. Any other type of singu-

larity may be treated in a similar way (Figure 2).

It is worthwhile for the following derivations to discu3s

first the radiat~on condition. In both subcritical and super-

critical flows the flow is unperturbed at x * -w (Stoker, 1957).

Adopting the same condition in the case of a near-critical flow,

it is convenient to take, o 1 and uo in the inner expansion

as the unperturbed depth and velocity at x - -® rather than at

x 0 0. Since the Infinitesimal wave expansion will be shown to

be regular, under the above radiation condition, in the region I
x < 0, the expansion may still be called the "inner" expansion.

Hence, the first order linearized expansion, similar to Equation

(8) is

@I
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• u --u + B()ui

v = 8(c)vl [42]

= 1+ 5(E)nl

The gauge function 8(c) represents the vortex strength

(B(e) - 0 as c-- 0). Its form will be found from the require-

ments of matching with the already found outer solution 132]
and [33]. One could obviously start the inner expansion with an

E puwer series but an unknown gauge function has to be used in

this case in the outer expansion in order to make the matching

possible.

The variables of the inner expansion [42] satisfy the Equa-

tions [9], [10], [12] and [13), Equations [11] and [14 being re-

placed by

U0ui + ni = 0 (y - [13]

n1 a 0 (x = -- ) [ 44]

As usual the velocity components are separated in re.,llar

and singular parts

r s r +ux =uz +U u V1 v2 r +1v/I 5
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The singular term is selected to represent the potential

flow due to a vortex located at x - 0, y = * , and confined between

two solid boundaries y = 0 and y = 1 (Figure 2).

The complex potential of this flow is

sinh Z(z+i
(z) = 1 ,I."n 2z [46]

2ri sinh 1(z-i')

2

s s s df15
where z = x + iy and w, = u, - iv, = dz

The velocity along the upper boundary is

s1 sin i'[7

u (x,l) s [47]
cosh rx + cos r

The regular parts of the velocity components have to satisfy

the equation

2 It rJ 2 9u° ux + (, u =u ) [48]

which is obtained from Equations [43] and [12] by the elimination

of i . The solution may be represented by integral Fourier

transforms (Wehausen and LaItone, 1960) as
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V' r r"

w ()= u - iv,

1 sin rb c k P k 2dc

= I- J cosh irs + cos irb J k cosh k- 0/u 2 s~nh K

-O -OO

[49]

where u 2 < 1. Equation [491 will be integrated for u < 1 and
0 o

u will tend to Its critical value u = 1 in the final result,
0 0

after Imposing the rudiation condition.

The details of the integration for ur (x,l) are given in tne

Appendix. The final result for ul(x,l) is

uI(x,l) = u1, (xl) + ul (x,i)

k s i n h k b s n k X - 0 k m s n  k m b e+5o . ..... . + c 150]

sinh k((1- - + Uo2ko ) l + ku 2  - 1 sink0 00om m 0

for x a 0. For x f' C, x has to be replaced by -x In Eqiation [50],

c Is an arbitrary constant. In order to ensure the radiation re-

4uIrement, th- .,rst term Is removed from E4-a:Ion (501 for

x * O by adding to uj the proper solution of the homogeneous Pjud-

t~or (48] (Lamb, 194.5). which Is, In the present case

k sinh k 0b sin k xo o0

sinh k. 1- i+ U0
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The limiting case of u 0  1 may be computed by taking Into

account that k0 is a root of the following equation

tanh k k-k3/ 3+... .u
k k o

Hence u 2 = - k 2/3 + ... and the final expressions of u, (x.1)
0 0

when u - 1 become
0

® -kmxOD sin k b e-

u1 (x,l) = 3bx - m (x 2 0) [52]

m=l

~kmX

sin kb e m

u1 (x,l) = - km sink (x SO) [531

m1

the higher terms(in k 2, k'... ) being neglected.
0 0

The complete solution of Ij according to Equations [42],

(431, [441, (521 and (531 is

-k mxfsin k mb e

1 1 - 3bbx + sn m  (x 2! [54)
k m sin km

rn-i

* k x
kmb e m

+ (xsC) 55
n-i

1I
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where tan k = k and k > 0.

m m m

The inner solutior. is singular as x = o. Using the previous

outer expansion (Equation 23), the inner solution may be matched

with the outer solution [321 and (33] in the region x > 0.

The outer limit of the inner representation is found from

Equation [551, through the usual procedure, to be

= 1 - 3b5(E)x [56]

-kE -X

where terms containing e have been discarded since they

are exponentially small.

The outer limit of the inner representation of u(x.y) should

be dete-mined by integrating Equation [46] for arbitrary y. It

Is known, however, that at x > 1 the u distribution is almost

uniform and u(x,l) may be substituted for u(x,y). Hence, ac-

cording to Equations [42] and [54]

sin k b -k x
U 0° + 3bx - z km sin k e [571

m=l

and the outer limit is

u u 0 +3bbx. [58)
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The matching of the inner solution 156] and 158] with the

outer solution [32] and [33] at zero order implies N = U = 1.
0 0

The matching at e order requires that U and N should be c de-
0 0

pendent (a similar situation occurs in the problem of inviscid

flow past an airfoil (Van Dyke, 1964)). Hence,

N = 1 + ECB2
0

[58a]
EC

UO = U UA 2

0

These two relationships and Equation [27] show that, at the order

considered here,

u =1 +EO ( B2 - ) [59]

where the relationship 1/A 2 = 1-B2 has been used.

The matching of the terms dependent on x provides the ad-

ditional relationship

-E 3~ (- b5)' (601

From Equations [59] and [60] we finally find

(u [61]

B 2 (1-B2)2 3(b5)2
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3 1/3 )2/3
cC 2/3 (b5) -  [62]

[B(1B)]2/3

Equations [61] and [62] permit the determination of B (also A

and A) and EC as functions of 6 and 1-u.

Two extreme cases are of particular interest: In a first
case assume that 6-o 0, but 1-u 0 0. Three solutions are then

0

possible: (i) B = 1, i.e. o - o, which means a uniform flow;

(ii) B = 0 and 6/B = 0 which is again a uniform flow since

EC = 0; (iii) B = 0 and 6/B 0 0, which represents a solitary

wave. The last case is nontrivial but has to be excluded from

physical considerajions. It has been considered as a mathemati-

cal possibility by Filippov (1960) using other methods.

In the second case u = 1 and / 0, which means that the
0

unperturbed upstream flow is exactly critical. In this case

1/3 2/3

B 2 = 3 cC =32 (bb) [63]

The outer solution for the free-surface profile in the

general case according to Equations [26], [28] and [30], is
given by

UoN6 (Ex [64]

4u4
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All the parameters appearing in Equation [64] may be determined

as f'unctions of (1-uo) and 5 from Equations [58], [59], [61] and

(62]. A composite expansion with a uniform representation of n

may oe written by combining the inner and outer solutions (Van

Dyke, 1964). In the simple case u = 1 the composite expansion0

of , for x 0, is

=a+sink k sinkkxm m
1 + 2 )\uJ+ 1 k in k e~k

m m
m=l

-3 (b5) tanh 2  x + co-h 1  [65]

In Figure 3 the shape of the free-surface is repeesented for the

particular case b = 0.6 and 6 = 0.01. The series in Equation

[65] has been summed by using an electronic computer with the

values of k from Carslaw and Jaeger (1959). The matching is
m

possible, at the order considered here, only for 5 << 1.

The drag force on the singularity may be found by a mo-

mentum balance between the sections x = - c and x = . The flow

depth and velocity at x = 4-w (downstream) are

= N - = -

(66]

u U 0  1+-- Jf
I

LI
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The dimensionless drag forces is, therefore, given at c

order, by

2 1 12+ U° + fi -2 2 L-

2 0
0FA 2uA 2 A 2A2

At the critical speed u = 1, F has the simple expression

V3 2/3
F = 2(4] (bb) [68]

cr in a dimensional form

1/3 2/3
F = 2 (4l [69]PgV,2 2 , 13/2

DISCUSSION OF RESULTS AND CONCLUSIONS

Three basic lengths are present in the problems discussed

in the foregoing sections: the flow depth 8', the amplitude

(associated with e) and the ratio u' 2 /g. In the infinitesimal0

wave expansion the last two lengths are referred to 1' and the

periodic solution of the homogeneous equations in the subcriti-

cal range provides the well-known dispersion relationship be-

tween Fr u0'/(g') and the wave length L' (Equation 18). For

small values of a, where - 2r1'/L', Equation (18] yields
(F

"V-I -3(1-Fr')
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As Fr- i1, L' -* c and the homogeneous problem has a non-

periodical solution divergent at infinity (Equations 37). The

shallow water solution is found by relating x' to L' rather

than to 2' and by imposing a nonlinear relationship between the

amplitude and the wavelength (in the case of the solitary wave

a - E). In this sense the results obtained by using the method

of matched asymptotic expansions are related to other derivations

of the first order equations of shallow flow (see, for instance,

Benjamin (1967), p. 561-562).

Although the flow has been found in the vicinity of the

singularity by linear equations, the dependence of the solution

on the problem's small parameter (1-h in the case of the solitary

wave and 6 is that of the singularity) is nonlinear, even at first

order (Equations [40], [653 and [68]). In this sense the solu-

tions may be regarded as nonlinear.

The solutions for the higher order terms of the expansions

and their matching should provide very valuable information and

insight into the problem, but the computations become tedious as

the order is increased in the inner expansions.

The method of matched asymptotic expansions proves itself

to be a powerful too- in solving nonlinear problems of fluid

mechanics in general, and of water waves in particular.

i

I
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APPENDIX

THE INTEGRATION OF EQUATION [49 ]

$One of the integrals of [49] may be evaluated in the fol-

lowing closed form (Gradshteyn and Ryzhik, pp. 505)

00

I cok z-s) sinh kb cos kz
s= 2 s 70]cosh rs + cos rb sin rb sinh k

-00

Hence, Equation (49] becomes

Go

w1r(z)_ 2 r= 1 f k sinh kb cos kzw()u - Iv1  -1P dk
sinh k(k cosh k - I sinh k)

_oo U 2a

0

(711

On the upper boundary z - x + I the real part of (72] is

Go

i kxu r(x,1) PV k sinh kb edk (73
sinh kc(k - l- - " tanh k)

u
-00

The integration of Equation [73] follows Lamb's procedure.

For x > 0 the Integration is carried out in the upper k complex

plane. The poles of the integrand have the following locations:
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two poles kc k 0 on the real axes, roots of the equation

tanh k =u 2k; a row of poles on the imaginary axes k =ikm
0

(m =1l,2, ... ), roots of the equation tan k Ak and a row of
0

poles 11 = in~r (n = 1, 2,..)
n

The contribution of the last serieq of poles is

sin k b e nX

LA cos k n
n=l

The same sum is obtained from the integral

:77f sihsinh kb e ik dkc

P. ~ ~ ~ ~ sn 50)Ic esl en

-k

sin k b e cohn +CBr
n0k sin rb

n-n

The contribution of the poles It, 18 given by the sum of

residues, I.e.
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~-k x

km sin kmb e m

m~ m

The contribution of the poles ± k is evaluated by in-0

tegrating [73] along two semi-ckrcles, in order to obtain the

principal value. The result is

k sinh k b sin k x0 o 0

sinh k ol -1 + U 2 k 02

o
k( 0

These partial results are summed in Equation [50]

When x < 0 the results are similar, and are obtained from

those above by replacing x by -x.

I

3.
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